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ABSTRACT

A series of experiments were perforined that covered the entire range of
expansion and collapse of an underwater bubble 1 the vicinity of a rigid
wall. These experiments have been successfully sinulated using a new
arbitrary Lagrangian Eulerian hydiodyvuuniic cotuputer programn which
can run numerical simulations of prictical bubble problems in 10 to 20

minutes of CPU time on a CRAY-YMP w a1 overal! rate of 80 MFLOPS.

INTRODJCTION

It has been 28 years since Naudé and Ellis (1161) fir<t observed the jet which forms inside
an underwater bubble as it collapses close 15 a -igid surface. During the ensuing years
other workers have described this collapse in nore detail (Steinberg 1987), with particular
attention being paid to understanding why this eollapse damages the nearby surface.

In 1971, Plesset and Chapman (1971) calculated the jet formation, and n 1975, Lauterborn
and Bolle (1975) showed that these calculations were i qualitative agreement with their
cxperiments. Plesset and Chapman calculat»d only rhe bubble collapse, starting with a
spherical shape and velocity field. In addition. the boundary integral method they used
assumes an incompressible fluid. In 1986, Blake Tiub and Doherty (1986), also using a
boundary integral method, inclided the exypi nsion phase 111 their calculations.

We know today that the bubble, at its maxi nun ey pansion s about 2% oblate and has o
very non-spherical velocity distribution. Whie th - water is offectively incompressible most
of the time, this assumption may nor be val:d durin g rhe mitial expansion or during the
final collapsc if the pressure becomes comparible 1o, or exceeds the bulk modulus of water
(2.2 GPa). This case is true for example f the bhiobles ave produced by very energetic
sources such as high explosives

One of the principal discrepancies between ti ¢ cali caleculations and the Lauterborn and
Bolle data was that the calculated bubble emain- uearly spherical during the collapse

This work was performed under the auspi:es of the (.S Department of Energy by
lLawrence Livermore National Laboratory inder -ontract No. W-7405-Eng-48.



while the data show the bubble becoming prol: te quite vcirly. reaching about 17% prolate
just prior to the start of jet formation. Lanterborn 19500 has stated regarding the shape
of collapsing cavities, “the conjecture is that Jet fonuation depends one the carviture
of the cavity-liquid interface. Parts of higher curvat: 1o collapse faster than less curverd
parts.” Consequently, when the jet occurs dep rds strongly on the bubble-shape hustory.
An additional shortcoming of the honndary vitegral v tiod s that it cannot go hevond
the initial formation of the jet.

The problems inherent in boundary integral nicthods ~a1 be overcome througli the vise a
fast hydrodynamic computer program. The peoncipal porpose of this paper is to show our
successful numerical siimulation of & complete < xpernv vtal b hble expansion and collapse
in the vicinity of a rigid wall.

COMPUTATIONAI DESCRIPTION

Numerical simulation of detailed bubble dynai ies 1w It nsions represents a technical
challenge. Bubble expansion and collapse combanes tw ) cticines of hydrodynamics i one
problem. During the beginning of rhe bhubb o ¢ noraon anl the end of the collapse.
the water and steam may be compressible. ver dunme 00 1o Lille phase of expansion aid
collapse (which comprises most of the probles: e 0 vat 1 effectively incompressihle

Incompressible hydrodynamics techniques exi-- whic vaa Landle the middle phase of the
problem accurately and efficiently. Howevir these nicthode can not always be used to
model the beginning or end of the probleri i oriwyal compressible hydrodynamies
simulation programs should be able to model the e v pobem. The difficulty here i
that the time steps of most of these prograra v yess - coed v the Courant stability it

and therefore may require an unacceptably o se ane it of conputer time to run throngl,
the long mmddle phase of the probieny. Iinpiac oleors b coo restricted by the Couran
limit) have been used with great snecess o Hrebis of G spatial dimension. o two
dimensions. however, the amount of wumerys wior 1oc s 1e e reach the implicit solution
often exceeds the work required to reach tio i <o Glaton, even thongh it st
obey the restrictive Courant time step limi

In our attempt to calculate bubble dynamics. we hiave thind 1 most practical to use existing
hydrodynamics algorithms for conipressible #uid Hev and then use several strategies to
make the problems rn as fast as possible We ha v jeveloped a new hydrodynamics
computer program to do this. With alimost - cevve pliva & op of importance vectorized.
it 15 capable of caleulating practical hubble po bie e 0 10 10 20 minutes of CPU taue ou
a CRAY-YMP al an overall vate of RO ANF o

Our new hydrodynamics prograw. closely foliows top: algontiuns of an ALE (Arbitrary
Lagrangian Eulerian) hydrodynamics progran. developed by Barton, LeBlane and Wilson
during the 1970°s (1985). For many vears. th - ALY wpran, has been successfully applied



to a variety of difficult hydrodynamics probleias whete neither pure Lagrangian nor pure
Eulerian approaches could succeed.

Lagrangian calculations are not well suited for bubnle jet formation. In a pure Lagrangian
calculation, the grid would distort and severely himit the time step. The Eulerian capability
of an ALE program allows jet forination to be calenlated without any difliculty. Using the
ALE technique keeps water zones evenly spaced in radius. This keeps the time step up
and still provides good numerical accuracy. It also keeps the computational grid smooth
and regular in the region of the steam bubble

The program solves the inviscid compressible hydrodyvnamics equations in two spatial di-
mensions. A computation grid (generally oo nsisting of thousands of nodes) 1s used to
resolve the spatial distribution of mass, momentuni and energy. The hydrodynamic equa-
tions of motion are integrated by stepping through time with a discretized time step which
15 chosen to be small enough to guarantee numerical stability as well as reasonable accuracy.
The computational cycle executed at cach tin e step 15 descrbed as follows.

First the Lagrange step is done. where all of the nodes (grid points) move as if they were
embedded in the fluid. The velocities of these nodes are aceclerated by pressure forces as
well as by any other forces present. Then the nodes are advanced to their new locations
using these new velocities. This updated grid « called the Logrange grid. New volurnes are
calenlated for the zones (or elements) bounde 1 by thie nodes and the density of each zone
1s updated. Finally the mnternal energy of eacli zotr e 1+ updared by integrating the amount
of PdV work done on it during the Lagrange stepr {hua Lagrange step is very similar to
that found in the HEMP hydrodynamies prograrn Witkins 1964).

Next the gridinotion step is donec, where each rode i+ tested for several types of grid
distortion. If a node exceeds a preset level of distortion, then the node 1s “relaxed” by
moving it from 1ts Lagrangian location towards .« pomnr that lowers the grid distortions
(Sharp & Barton 1981). The resulting grid 1+ called tbe gereralized grid.

Lastly the advection step is done, where the overlap olmues between the Lagrange grid
and the generalized grid are caleulated. and tlie ac vection of miass, momentum and energy
1s performed. The advection step is operator <plit into two sct- of one dimensional sweeps.
Each sweep uses a monotonie second order il cetion sugorithin similar to the one proposed

by Van Leer (1977,1979).

As mentioned earlier, we have cmployed several strategies designed to speed up the calcu-
lations without any effective loss in accuracy The first of these strategies is to use polar
zoning because it is naturally suited for thie carly and middle phases of the problem, and
it requires a minimum number of nodes (avcnnd 50091 for an adequate description of the
problem.

One undesirable side effect of polar zomng how-ve s 15 that 1t produces small zones at
the center of convergence. This can produe seveore Courant tune step immtations. This



problem is solved by coupling groups of adjacen: zones together so that they act collectively
as a larger zone.

The advection step. which is relatively expensive, necd not he done after each Lagrange
step. Generally 5 to 10 Lagrange steps are taken for cach advection step. This speeds up
the calculation by a factor of 3.

Finally, during the nearly incompressible parr of the problemn it is not necessary Lo re-
evaluate the water’s pressure from an Equation-Of Stare (EOS) subroutine. Instead the
much cheaper adiabatic relation can be used + updar -bLe nressare:

ép = Ciép i)

3

where 6p is the change in pressure. €, is the adiabatie s d speed and dp is the change
in density. The time step at which the Lagrmge stop run- is determined by aconracy
considerations, not stability. If the time step for goc:l acenvacy is much larger than rhe
Courant stability limit. then the Lagrange step con-ero of nany abbreviated subeveles
which use the adiabatic relation to update ~hii pressise atier than invoke the expensive
EOS subroutines. The EOS subroutines are cnly ¢ula d it 112 beginning of the Lagrange
step. This Courant subeycling speeds up the aleuwar v by o factor of 2.

EXPERIMENTAIL DESIGYN

The experimental design has been desceribed o detzal Ly Shima, Takayama and Tomita
(1983). Our specific experiment i shown 1« Fig 1 The nigid wall is 4.2 mm below
the tungsten eclectrodes and the water is imitialls ot 25 1°C wd 0.102 MPa. The growth
and collapse of the steam bubbles. initially i oduced b ar electric discharge across the
electrodes, 1s recorded by a fast framing canern witl o o torframe time of either 5 o
10pus. To visualize the bubble interior, a back ot (bt wie ased as schematically shown
in fig. 2. A more complete description of 11« cpiieai <5ty can be found i Tomita &
Shima (1986). In order to get complete eon tazc o e Tubnle history with suell small
interframe times, 12 overlapping cxperiment  wer o . crob covering only a portion of
the total experimment. This was acoomplished oo Dt with a delay cirenir.

»

Because the data were not all salen m one xpernr . 1 important to quantify the
reproducibility of the system. Shnua. Takaviuna ane Tonora have carefully studied this
problem. They pulsed their systemi numer us t mes wits the same electrodes nsing o
constant energy source. They found that afror aliont the 10" pulse on any given set of
clectrodes, the maximum bubble radius R venia ned ait: constant. We have quantified
these data and found that the RMS crror v 4 ‘s oot 17 and the maximum error is
about twice that For the 12 exporinients vopoctad o+ onnd only one that differed
from the average by more than 490 Expernoon € 0 ov > about 5%



OVERVIEW OF THE CALCULATION AND DATA

Fig. 3 shows the modified polar computational grid nsed at the beginning of the problem.
In the angular direction, 50 equally spaced zones were used. In the radial direction, there
are a total of 90 zones. Ten zones were used in the steam. and 50 equally spaced zones
were used in the water between the steam-water interface and a hemispherical surface of
radius 5 mm. Using a ratio of 1.05, 30 zones wer+ iised tc complete the zoning out to a
radius of 45 mm.

Because the size and shape of the initial steam bubble are not known, we assumed a
spherical bubble of radius 0.2839 mni. whick 15 appr ox:mately 1/10 of the maximum bubble
radius. In addition, the initial encrgy and density are not known. We used a density of

0.1 g/cc and then chose an energy of 0.0143% .J t¢ make the maximum calculated bubble
radius equal to the observed value

The EOS for the steam bubble was a simple gamma-law gas with v equal to 1.3. For the
EOS of water we used a Gruneisen form witl a non-linear shock velocity-particle velocity
(Us — U,) and gamma as described by Steinleerg (1987)

U, = 1.48 + 2.560, — 1.986( 1)U, + 0.2268(72 * 1, mm/us,  (2)

v =267—-217/p l<pe (3a)

7=105/p P

N
—

(3b)

where the initial density 1s 1 g/cc

Fig. 4 shows the computational grid at 300 s+ when the bubble has reached maximuin
expansion. The Eulerian nature of the calcu:ation 1+ respousible for the smooth appear-

ance of the grid in both the water and stean regions The water-steam interface is still
Lagrangian at this time. Fig. 5 shows the velocity vectors in the water at 300 us. Note

that the water-steamn interface away from the wall fras already turned around and begun
to collapse, while the interface near the wall s still expanding outward. The turn-around
point is located near the 4 o'clock positionr on tie 5 Fig. 6 shows the calculated water-

steam boundary at 605 ps. The collapsing bubble is hegimung to jet, but the water-steam
interface is still Lagrangian. Fig. 7 shows the conmputational grnid and the water-steam
boundary at 615 us. The water-steam interfa-e is now Eulernan in character. Fig. 8 shows
the grid and boundary at 620 pus. just after the jot ‘s erossed the bubble and impacted
the other side.

Allowing the jet to pass through the centerpoint of rthe computational grid may produce
two adverse effects.  First. the computatioral tin o step may fall below an acceptable
value. Second, the jet may suffer imphysical deforrations because numerical errors tend
to concentrate at the centerpoint  In our calodati m Hoth of these problems are avoided by



rezoning the bubble region at 611 pus. At that tuae, just hefore the rezoning, the watcer jet
has pushed the centerpoint far over to the wall iide f tLe bhubble cavity, but has not vet
passed through it. During the rezoning proces o rew omputational grid is generated.
This new grid is also polar in character but ti.c ceuterpoint is located deep within the
water jet. Ouly that part of the grid containing "L stears bubble and the jetting water is
altered. The overlap volumes between the old «i.d new srids are calculated and the mass,
momentum and energy of the old grid are trans{erred to. the new. The calculation is then
able to proceed in time. Fig. 7 shows the gril shortly after the rezone. The effect of
this rezone is to pull the centerpoint through tl.- tip of tuc water jet in one discontinnous
jump. The calculation may then continue wit out an. more difficulties associated with
the centerpoint.

One difficulty we encountered concerned the Bist row o wvater zones uext to the st
These zones experience a radial velocity gradic it th ravighow most of the problem. O
artificial viscosity algorithm treats this velocity aradics. a-if v were a shoek, causing the

artificial viscosity to turn on even though no <l sk - present The effect of this artificial
viscosity is to make the first row of water zone- «titfer n the radial direction than they

should be. This radial stiffness prevents the zoncs from onipre-sing in the radial direetion
when they expand in the angular direction. and that vuawes tie density and pressure to
drop to unphysical values 1 those vones Thic praldes 1 vas <ived by setting the radial
velocity gradient to zero when domy the artfic i v sco -0 croedation i the first row of
water zones.

Over 90 photographs of the hubble were taker a2 Lithrer, Xperiments. giving rood
coverage of the expansion and collapse over e courwe of he entire probleni. Rather
than compare 90 photographs with 90 caleulaic | ublic chases the equatorial diamerer
the near pole distance, and the far pole distar  wir ol rea | from the photographs as
functions of rime. The definitions of these terne ve <hovroon e 90 and the experimental
and calculated values are plotted in figs 10-17. L 20t set~ . asually eight photographs
cach, are labeled A-L with each letter sepreser ting ane o livieeal photograph. The thin
lines connecting the letters are merely aides ‘o 'be oy Note | at the near pole docs ot
begin to collapse until ~420,5. abore 130ps a5 v i e “0 ol bieging.

Two other useful measures are the bubble oo ter il e prosate ratio. The former 1s
the average of the near and far pole distances and the ater - the ratio of the the polar
iameter divided by the equatorial dinmeter v prolate st greater than one indicates
a prolate bubble; a prolate ratio less than om mde ar < o1 blate bubble. Experimental
and caleulated values of these measires are sh w101 e 15 ard 14.

DISCUS~TON

Figs. 10-14 compare calculated and experimental newsnres of the bubble shape vs. time,
while figs. 15 and 16 compare the complete shinoes ot o as ditforent times. Examination of



the time plots shown in figs. 10-14 indicate that the degree of reproducibility among the
12 experiments is good. If the initial steam caergy is adjusted, it is possible to shift the
calculated curve so that it agrees with the data from any single experiment. For example.
a 6% increase in the initial energy will expand the maximum bubble radius by 2%, which
is less than the RMS error of 4%, and shift the calculated trajectory presented in fig. 10
such that it agrees with experiments K and I

When the bubble nearly fills the camera fraine, ¢ 15 difficult to measure the near and
far poles relative to the optically undistorted parts of the electrodes. In some cases, the
rigid wall was used as a reference, but it docs not always present a sharp image on the
film. Consequently, these pole distances, and I ence the bubble center, have a reading error
which varies among the experiments and is estimated at £2%. Because all 12 experiments
do not follow the same trajectory. the calculation presented in figs. 10-14 represents the
best overall fit.

Fig. 14 shows that our calculation correctly predicts the 2% oblateness (prolate ratio
of 98%) that occurs around 200 ps. The calculation also successfully predicts that the
cavity shape will become prolate during the collapse of the bubble. However, we do not
understand why the calculation predicts a peax prolate ratio of 1.26 whereas the data peak
20ps earlier at 1.17. Nevertheless, we find th results of this calculation encouraging. In
the experiments of Lauterborn and Bolle and the earlier calculations, the distance from the
wall to the initial center of the bubble was 1.5 tirues the maximum radius of the bubble.
In our work, this ratio 1s 1.4, which is closc enongh to expect similar results when the
times and distances have been scaled. In Laut :rborn and Bolle, at scaled times of 72.5 and
87.5% of the way through collapse, the calculated prolate ratios of Plesset and Chapman
are only about 1.05 and 1.07 respectively, those »f Blake, Taib and Doherty about 1.08
and 1.11 respectively, whereas the data give values of about 1.15 and 1.18. These scaled
times correspond to approximately 520 and 160 ;is in our work, where our experimental
and calculated values are not only i good agrecrent, but are similar to the experimental
values of Lauterborn and Bolle.

Fig. 15 shows the calculated bubble cavity st ape compared with one of the experimental
photographs taken at 525 ps. Notice that the agreement in bubble size, shape and center
is good. Fig. 16 shows another comparison betwreen calculated and experimental bubble
cavity shape at 605 ps. In this case, the bubble shape and center agree well, but the overall
size of the calculation is smaller than the experiment. However, at this late time. even
a minor problem with the numerical simulation an show up as an sigmficant difference
between it and the experiment. becanse the hubhble systerr s changing <o rapidly. The
velocity of the jet at this time s approxunan by 16 1 /<

Fig. 17 presents the calculated pressure at the rigid wall as a function of time. The
pressure has been spatially averaged along » dise of diamerer 6 mm to approximate the
pressure pulse seen by a Swiss Kistler gauge  The piot shows the pressure from both the
initial bubble explosion as well as the pressi-e spike from the bubble collapse.



An intuitive explanation for why the collapsing bubble jorins a jet can be seen by examining
figs. 13 and 18. Fig. 13 shows that during the ¢xpansion phase, 0-300us, the bubble center
moves slightly away from the wall. but during, the collapse phase, 300-600us, the center
of the bubble moves rapidly towards the wall. This motion towards the wall is because,
as the bubble collapses, the water surroundirg the hubble is forced to expand, and its
pressure drops. The pressure drops more rapicly on the side of the bubble facing the wall
because there is less water available to flow mto the volume previously occupied by the
steam bubble. It is this difference in pressure which moves the center of the bubble towards
the wall. Further away from the bubble, however. the velocity field of the water is still
converging upon the original center of the bul'ble. As a consequence, the converging flow
of the water stagnates off-center late in time, forming « region of high pressure which lies
just outside the bubble. This region of high pressure i« casily identified in fig. 18. It is this
off-center convergence of the water, and the v >sulting pressure peak which forms ontside
the bubble, that causes the jet to form.

We also examined a variety of issues concerning the validity of our calculational approach.
Calculations which included the tank walls an | the water-air surface inside the tank werc
done and showed that there was no significai t effect due ro them. This is a non-trivial
conclusion, since sound signals have ample tune o travel between the bubble and the
tank wall or the water-air surface several times during the course of the experiment. The
initial density of the steam bubble was varied Tom 1 g/cc to 107* g/cc with no significant
effect observed on the bubble shape. Using the measured initial values of temperature

and pressure produced no effect compared with the ase of the nominal STP conditions of
300°K and 1 atmosphere.

The effects on the bubble shape due to the complexity of the EOS of the water and steam
were studied and found to be minor. We found that the water EOS could be simplified
from eqns. 2 and 3 and modeled equally wel” as a fluil with « constant bulk of 2.2 GPa.
We varied this bulk modulus from 1.5 GPa t. 3.0 GP: and the adiabatic exponent of the
steam from 1.2 to 1.666 and observed that tl cal ulated results were insensitive to these
variations. Finally. zoning sensitivity studics ore lore tooserify that our calculations had
converged.

One of the major difficulties in simulating bt bble expansior. and collapse experiments 1s
that the size, shape, density and energy of the initial stearn bubble are unknown. One
solution to this problem would be to use a few milligrams of high explosive (HE) as an
energy source. In this way, the geometry. densitv and initial energy can be completely

specified. Such small quantities of HE are net difficult to work with in a laboratory
environment.

An additional advantage 1s that it is easy to produce bubbles a few tens of centimeters n
diameter. At this size, the bubble is much lirger than a typical pressure gauge, such as
the Swiss ICistler transducer. These gauges d» not have a uniform pressure response over
their face (Tomita, Shima & Ohno 1984) wlich is i problen: if the bubble is much smaller



than the gauge. With a bubble that is much larger, absolute pressure measurements can
be made. Of course, in this case the effect of gravity must be taken into consideration.

An HE bubble is not a vapor bubble, but contains non-condensable HE product gases.
However, this too is not a problem, as good representations of the EOS of these product
gases exist. Finally, our experience has shovmn that eqns. 2 and 3 will be adequate to
describe the EOS of water under the conditions of strong HE shocks (Steinberg 1987).

CONCLJSION

After a successful comparison to a body of ¢ xperimental data, a modern hydrodynamic
computer simulation program allows the user to examine other thermomechanical variables
in an expanding and collapsing bubble to a degre: not readily achievable experimentally.
We have made such a successful comparisor of bubble shape and size vs. time. The
simulations now permits us to view the velodity and pressure fields as illustrated in figs.
5 and 18. In addition, numerical simulations give the user the flexibility to examme even
more challenging problems, such as very non-spherical bubbles, bubble-bubble or shock-
bubble interactions. We hope to make such calcularions the subject of future investigations.
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FIGURE CAPTIONS

Experimental Design

Schematic of the optical observation systern
Initial Computational Grid

Computational Grid and Bubble Shape at 300 ps
Velocity vectors in water at 300 us
Computational Grid and Bubble Shape at ¢05 -
Computational Grid and Bubble Shape at €10 ;.-
Computational Grid and Bubble Shape at 20 ;-

© 00 N O e W

Definition of Terms: Equatorial Diameter “ear Po.¢ Distance and Far Pole Distance

. Position of the Equatorial Diameter vs. Tiue

—
)
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13. Position of the Bubble Center vs. Time “Note «uppressed zero.
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16. Comparison of the Experimental and Cale 1latcl Bubble Shape at 605 us.
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Fig. 4 Computatlonai grict and bubble shape at 300 1S
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Fig. 6 Computational grid and bubbie shape at 605 LS
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Fig. 7 Computational grio and bubble shape at615 s
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Fig. 8 Computational grid and bubble shape at 620 LS
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Fig. 10 Posiltlon of the equatorial diameter vs. time
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Fig. 11 Position of the near pole vs. time
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Fig. 12. Posltion ol the far pole vs. time.
Note supressed zero.
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Fig. 13 Position of the bubble center vs. time.
Note supressed zero
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Fig. 14 The prolate ratio vs. time
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Fig. 17 Calculated pressure at the wall vs. time
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